PixelLink: Detecting Scene Text via Instance Segmentation

نویسندگان

  • Dan Deng
  • Haifeng Liu
  • Xuelong Li
  • Deng Cai
چکیده

Most state-of-the-art scene text detection algorithms are deep learning based methods that depend on bounding box regression and perform at least two kinds of predictions: text/nontext classification and location regression. Regression plays a key role in the acquisition of bounding boxes in these methods, but it is not indispensable because text/non-text prediction can also be considered as a kind of semantic segmentation that contains full location information in itself. However, text instances in scene images often lie very close to each other, making them very difficult to separate via semantic segmentation. Therefore, instance segmentation is needed to address this problem. In this paper, PixelLink, a novel scene text detection algorithm based on instance segmentation, is proposed. Text instances are first segmented out by linking pixels within the same instance together. Text bounding boxes are then extracted directly from the segmentation result without location regression. Experiments show that, compared with regression-based methods, PixelLink can achieve better or comparable performance on several benchmarks, while requiring many fewer training iterations and less training data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fused Text Segmentation Networks for Multi-oriented Scene Text Detection

In this paper, we introduce a novel end-end framework for multi-oriented scene text detection from an instanceaware segmentation perspective. We present Fused Text Segmentation Networks, which combine multi-level features during feature extracting as text instance may rely on finer feature expression compared to general objects. It detects and segments the text instance jointly and simultaneous...

متن کامل

Generative Shape Models: Joint Text Recognition and Segmentation with Very Little Training Data

Abstract: We demonstrate that a generative model for object shapes can achieve state of the art results on challenging scene text recognition tasks, and with orders of magnitude fewer training images than required for competing discriminative methods. In addition to transcribing text from challenging images, our method performs fine-grained instance segmentation of characters. We show that our ...

متن کامل

Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

Previous deep learning based state-of-the-art scene text detection methods can be roughly classified into two categories. The first category treats scene text as a type of general objects and follows general object detection paradigm to localize scene text by regressing the text box locations, but troubled by the arbitrary-orientation and large aspect ratios of scene text. The second one segmen...

متن کامل

Reasoning about Object Instances, Relations and Extents in RGBD Scenes

The vast majority of literature in scene parsing can be described as semantic pixel labeling or semantic segmentation: predicting the semantic class of the object represented by each pixel in the scene. Our familiar perception of the world, however, provides a far richer representation. Firstly, rather than just being able to predict the semantic class of a location in a scene, humans are able ...

متن کامل

Application of Planar Motion Segmentation for Scene Text Extraction

This paper explores an approach for extracting scene text from a sequence of images with relative motion between the camera and the scene. It is assumed that the scene text lies on planar surfaces, whereas the other features are likely to be at random depths or undergoing independent motion. The motion model parameters of these planar surfaces are estimated using gradient based methods, and mul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01315  شماره 

صفحات  -

تاریخ انتشار 2018